Very large-scale integration is a process of embedding or integrating hundreds of thousands of transistors onto a singular silicon semiconductor microchip. VLSI technology's conception dates back to the late 1970s when advanced level processor (computer) microchips were also in their development stages. Two of the most common VLSI devices are the microprocessor and the microcontroller.
VLSI refers to an integrated circuit technology with numerous devices on a single chip. The term originates, of course, in the 1970s, along with various other scale integration classifications based on the number of gates or transistors per IC.
The remarkable growth of the electronics industry is primarily due to the advances in large-scale integration technologies. With the arrival of VLSI designs, the number of possibilities for ICs in control applications, telecommunications, high-performance computing, and consumer electronics as a whole continues to rise.
Presently, technologies like smartphones and cellular communications afford unprecedented portability, processing capabilities, and application access due to VLSI technology. The forecast for this trend indicates a rapid increase as demands continue to increase.
The following are the primary advantages of VLSI technology:
Reduced size for circuits
Overall, VLSI IC design incorporates two primary stages or parts:
This includes digital design using a hardware description language, for example, Verilog, System Verilog, and VHDL. Furthermore, this stage encompasses design verification via simulation and other verification techniques. The entire process also incorporates designing, which starts with the gates and continues through to design for testability.
This consists of characterization and CMOS library design. Additionally, it involves fault simulation and physical design.
The entire design process follows a step-by-step approach, and the following are the front-end design steps:
Metallization: In this step, we apply a thin layer of aluminum over the entire wafer.
Assembly and Packaging: Every one of the wafers contains hundreds of chips. Therefore, we use a diamond saw to cut the wafers into single chips. Afterward, they receive electrical testing, and we discard the failures. In contrast, those that pass receive a thorough visual inspection utilizing a microscope. Finally, we package the chips that pass the visual inspection as well as recheck them.
VLSI technology is ideally suited to the demands of today's electronic devices and systems. With the ever-increasing demand for miniaturization, portability, performance, reliability, and functionality, VLSI technology will continue to drive electronics advancement.